# **Greenhouses Gases Emissions from Dairy Cattle in Indonesia**

Idat G. Permana, Suryahadi & E. Qurimanasari

Department of Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University Bogor, 16680, Indonesia email: permana@ipb.ac.id



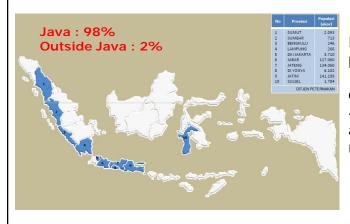




# The Main GHG Emission from Agriculture Sector Net Primary Production (CO<sub>2</sub> uptake) CH<sub>4</sub> CO<sub>2</sub>, CO, NMVOC Rice Soil respiration Source: IPCC (2006) International Seminar on Animal Industry 2012

### INTRODUCTION

- □ Livestock contribute on green house gases (GHG), by methane (CH<sub>4</sub>) and nitrous oxid (N<sub>2</sub>O) emission.
- □ Dairy cattle is an important source of CH<sub>4</sub> emission. The methane emission from dairy cattle is higher than beef cattle (IPCC, 2006).


Dairy cattle : 68 kg/head/yearBeef cattle : 47 kg/head/year

☐ In Indonesia Livestock Subsector contribute 17.5% of methane emission.



International Seminar on Animal Industry 2012

### Distribution of Dairy Cattle in Indonesia



Dairy cattle population in Indonesia has currently reached 487,715 head and located mainly on Java Island.



### Dairy Cattle Population in 2010

| Province        | Population<br>(head) | %    |
|-----------------|----------------------|------|
| East Java       | 231,408              | 47.4 |
| Central Java    | 122,489              | 25.1 |
| West Java       | 120,475              | 24.7 |
| DI Yogyakarta   | 3,466                | 0.7  |
| DKI Jakarta     | 2,728                | 0.6  |
| North Sumatera  | 2,642                | 0.5  |
| South Sulawesi  | 2,198                | 0.5  |
| West Sumatera   | 857                  | 0.2  |
| Other Provinces | 1,452                | 0.3  |
| Total           | 487,715              |      |



International Seminar on Animal Industry 2012

### **GHG Emission from Livestock**

- ☐ Green House Gasses (HGH) from livestock are **Methane** and **Nitrous oxid**.
- ☐ Methane (CH<sub>4</sub>) is produced as part of the normal digestion process of ruminant:
  - enteric fermentation,
  - livestock manure management system



### N<sub>2</sub>O Emission from Livestock

- □ Nitrous oxide (N<sub>2</sub>O) emissions produce from manure, during the storage and treatment of manure (direct and indirect).
- □ Direct N₂O emissions occur via combined nitrification and denitrification of nitrogen contained in the manure, depend on:
  - N-content, duration of storage and treatment
- □ Indirect N<sub>2</sub>O emissions result from volatile nitrogen losses that occur primarily in the forms of ammonia and NO<sub>x</sub>



International Seminar on Animal Industry 2012

### Methane Emission Factor

- □ Inventory of greenhouse gas emissions (GHG's) for the livestock sector is highly dependent on the determination of emission factor on each animal.
- ☐ IPCC (2006) has provided guidance in calculating the greenhouse gas in the various sectors.
- □ Emission factors in each sector should be developed in each country.



# **Objective**

☐ Objective this study is to estimate greenhouse gases emissions from Indonesian dairy cows using the IPCC (2006) Guideline Tier 1 (default) and Tier 2 (modified) methods.



International Seminar on Animal Industry 2012

MATERIALS AND METHODS

### **Data Collection**

- □ Dairy population data was collected from Statistic Center Buro - Directorate General of Livestock Services and Animal Health (2011)
- □ The primary data was obtained from field observations in dairy cattle production area (KUNAK Cibungbulang), Bogor.
  - Cow's body weight, milk production, dry matter intake and dry matter digestibility of ration as well as manure management system.



International Seminar on Animal Industry 2012

### Methodology

- □ The calculation of methane  $(CH_4)$  and nitrous oxide  $(N_2O)$  emissions were calculated based on IPCC Guidelines (2006).
- ☐ The methane emissions were calculated based on Tier 1 (default) and Tier 2 (survey based modified) models.



### CH<sub>4</sub> Emission from Enteric Fermentation

- $\square$  CH<sub>4</sub> emission = N<sub>(D)</sub> x EF<sub>(T)</sub> x 10<sup>6</sup>
  - $Arr N_{(D)}$  = dairy population (head)
  - $EF_{(T)}$  = emission factor (kg  $CH_4$ /head/year)
    - $\square$  EF<sub>(Tier 1)</sub> = 68 kg/head/year (IPCC, 2006)
    - $\square$  EF<sub>(Tier 2)</sub> = modified model



International Seminar on Animal Industry 2012

### CH<sub>4</sub> Emission from Manure Management

- $\square$  CH<sub>4</sub> emission = N<sub>(D)</sub> x EF<sub>(T)</sub> x 10<sup>6</sup>
  - ightharpoonup  $N_{(D)}$  = dairy population (head)
  - $EF_{(T)}$  = emission factor (kg  $CH_4$ /head/year)
    - $\square$  EF<sub>(Tier 1)</sub> = 31 kg/head/year (IPCC, 2006)
    - $\square$  EF<sub>(Tier 2)</sub> = modified model



### N<sub>2</sub>O Emission from Manure Management

- $\square$  CH<sub>4</sub> emission = N<sub>(D)</sub> x EF<sub>(T)</sub> x 10<sup>6</sup>
  - N<sub>(D)</sub> = dairy population (head)
  - $EF_{(T)}$  = emission factor (kg  $CH_4$ /head/year)
    - $\square$  EF<sub>(Tier 1)</sub> = 0.01 kg/head/year (IPCC, 2006)



International Seminar on Animal Industry 2012

### N<sub>2</sub>O Emission from Manure Management

- ☐ Using IPCC Gudeline (2006)
- ☐ Direct N<sub>2</sub>O emission:

$$N_2 O_{D(mm)} = \left[ \sum_{S} \left[ \sum_{T} \left( N_{(T)} \bullet Nex_{(T)} \bullet MS_{(T,S)} \right) \right] \bullet EF_{3(S)} \right] \bullet \frac{44}{28}$$
 (44)

 $N_2O_{D(mm)}$  = Direct  $N_2O$  emissions from Manure Management in the country, kg  $N_2O$  yr $^1$   $N_{(1)}$  = Number of head of livestock species/category T in their country  $Nex_{(1)}$  = Annual average N excretion per head of species/category T in the country, kg N animal $^1$  yr $^1$   $MS_{(1,S)}$  = Fraction of total annual nitrogen excretion for each livestock species/category T

that is managed in manure management system S in the country, dimensionless

 $\label{eq:eff_S} EF_{3|S)} = \text{Emission factor for direct N}_2O \text{ emissions from manure management system S in the country, kg N}_2O-N/kg N in manure management system S}$ 

S = Manure management system

T = Species/category of livestock 44/28 = conversion of  $(N_2O)$ - $N)_{(mm)}$  emissions to  $N_2O_{(mm)}$  emissions



### N<sub>2</sub>O Emission from Manure Management

 $\square$  Indirect N<sub>2</sub>O emission:

$$N_2 O_{G(mm)} = (N_{volatilization-MMS} \bullet EF_4) \bullet \frac{44}{28}$$
 ....(5)

Where:

$$\begin{split} N_2O_{G(mm)} &= \text{ Indirect N}_2O \text{ emissions due the volatilization of N from Manure Management in the country, kg N}_2O \text{ yr}^1 \\ \text{EF}_4 &= \text{emission factor for N}_2O \text{ emissions from atmospheric deposition of nitrogen on soils and water surfaces, kg N}_2O-N (kg NH_3-N + No}_x-N \text{ volatilized})^{-1} \text{ ; default value is } 0.01 \text{ kg N}_2O-N (kg NH_3-N + NO}_x-N \text{ volatilized})^{-1} \end{split}$$



International Seminar on Animal Industry 2012

# **RESULT AND DISCUSSION**

### CH₄ Emission Factor

- Survey results:
  - Average BW : 390 kg
  - DM intake : 11.9 kg/head/day
  - Milk production 11.3 liter/head/day
  - Ration digestibility 60%
- ☐ Methane emission factor was **53 kg/head/day**.
- ☐ This methane emission factor was smaller than the IPCC default (68 kg/head/year).



International Seminar on Animal Industry 2012

### Total CH<sub>4</sub> and N<sub>2</sub>O Emission

- □ Total CH<sub>4</sub> emission calculated using Tier 2 (modified) was lower than calculated by Tier 1 (default), 25.89 vs 48.28 Gg/year.
- □ N<sub>2</sub>O emissions from dairy cattle were
  - Direct N<sub>2</sub>O emissions : 256,381 kg/year
  - Indirect N<sub>2</sub>O emissions : 2,299 kg/year
  - Total N<sub>2</sub>O emissions : 258,680 kg/year



 ${\rm CH_4}$  emission from enteric fermentation and manure management calculated by Tier 1 and Tier 2.

|                 | Tier 1                               |                                   |                    | Tier 2                                   |                                    |                    |
|-----------------|--------------------------------------|-----------------------------------|--------------------|------------------------------------------|------------------------------------|--------------------|
| Province        | Enteric<br>fermentation<br>(Gg/year) | Manure<br>Management<br>(Gg/year) | Total<br>(Gg/year) | Enteric<br>fermentati<br>on<br>(Gg/year) | Manure<br>Management*<br>(Gg/year) | Total<br>(Gg/year) |
| East Java       | 15.74                                | 7.17                              | 22.91              | 12.21                                    | 0.06                               | 12.27              |
| Central Java    | 8.34                                 | 3.80                              | 12.13              | 6.46                                     | 0.03                               | 6.49               |
| West Java       | 8.19                                 | 3.74                              | 11.93              | 6.36                                     | 0.03                               | 6.39               |
| DI Yogyakarta   | 0.24                                 | 0.11                              | 0.34               | 0.18                                     | 0.00                               | 0.18               |
| DKI Jakarta     | 0.19                                 | 0.09                              | 0.27               | 0.14                                     | 0.00                               | 0.15               |
| North Sumatera  | 0.18                                 | 0.08                              | 0.26               | 0.14                                     | 0.00                               | 0.14               |
| South Sulawesi  | 0.15                                 | 0.07                              | 0.22               | 0.12                                     | 0.00                               | 0.12               |
| West Sumatera   | 0.06                                 | 0.03                              | 0.09               | 0.05                                     | 0.00                               | 0.05               |
| Other Provinces | 0.10                                 | 0.05                              | 0.14               | 0.08                                     | 0.00                               | 0.08               |
| Total           | 33.17                                | 15.12                             | 48.28              | 25.74                                    | 0.12                               | 25.89              |

 $\mbox{N}_2\mbox{O}$  emission from manure management calculated by Tier 1 and Tier 2.

| Province        | Direct N <sub>2</sub> O<br>emission<br>(kg/year) | Indirect N₂O<br>emission<br>(kg/year) | Total N₂O<br>emission<br>(kg/year) |
|-----------------|--------------------------------------------------|---------------------------------------|------------------------------------|
| East Java       | 121,646                                          | 1,091                                 | 122,737                            |
| Central Java    | 64,390                                           | 577                                   | 64,967                             |
| West Java       | 63,331                                           | 568                                   | 63,899                             |
| DI Yogyakarta   | 1,822                                            | 16                                    | 1,838                              |
| DKI Jakarta     | 1,434                                            | 13                                    | 1,447                              |
| North Sumatera  | 1,389                                            | 12                                    | 1,401                              |
| South Sulawesi  | 1,155                                            | 10                                    | 1,166                              |
| West Sumatera   | 451                                              | 4                                     | 455                                |
| Other Provinces | 763                                              | 7                                     | 770                                |
| Total           | 256,381                                          | 2,299                                 | 258,680                            |

# CONCLUSION

- Methane emissions calculations based on survey results was lower than the IPCC default.
- ☐ Indonesia should develop a new Emission Factor for methane and nitrous oxid from livestock sector.



International Seminar on Animal Industry 2012

**Thank You**